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ENSO Simulation in CGCMs and the Associated Errorsin
Atmospheric Response.

KRISHNA ACHUTARAOL, KENNETH R. SPERBER AND THE CMIP MODELLING
GROUPS
PCMDI, Lawrence Livermore National Laboratory, Livermore, CA USA
Introduction
Tropical Pacific variability, and specifically the simulation of ENSO in coupled ocean-
atmospheregeneral circulation models (CGCMs) has previously been assessedn many studies
(McCrearyand Anderson[1991], Neelin et al. [1992], Mechosoet al. [1995], Latif et al. [2000], and
Davey et al. [2000]). Thesestudieshave concentratecon SST variationsin the tropical Pacific, and
discussion®f the atmospheriadesponséiavebeenlimited to east-westmovementf the convergence
zone.In this paperwe discussthe large-scaleatmospheriaesponsdo simulatedENSO events.Control
simulationsfrom 17 global CGCMsfrom CMIP (Meehl et al. [2000]) are studied.The web site http://
www-pcmdi.linl.gov/cmip/modeldoc provides documentation of the configurations of the models.
Results
For each model we have calculatedthe SouthernOscillation Index (SOI) and surface air
temperature@nomaliegTASA) in the NINO3 region(5° N-5~ S, 150 W-90° W); the areaof the Pacific
wherethe mostdramaticchangesn temperatureassociatedvith ENSO eventsare found. Warm (cold)
eventsare definedwhenthe standardizedJF seasonahnomaliesof the NINO3 TASA is =0.6 (< -0.6)
and the standardized0l is < -0.6 ( 20.6). The
NINOS tas anomaly time evolution for warm events year precedingthe anomalousDJF seasonis
denoted"year 0", consistentwith the definition
¢ “| of Rasmussorand Carpenter[1982]. The time
evolution of monthly NINO3 TASA composites
are plotted for warm eventsin Fig. 1, wherewe
haveusedthe GISST 2.2 dataandthe CRU SOI
to form the observedcomposites.The shaded
N areadenoteghe one standarddeviationenvelope
of the observed\NINO3 SSTAevolutionfrom the
GISST 2.2 dataset.The phaselocking of the
FigJFé 1 warm and cold eventswith the seasonatycle is
readily seenin the observationswith the peakof the eventsoccurringin the winter of year(+1).This
similarity in phasingof individual events,asdescribedn Rasmussomnd Carpente{1982], showsthat
while the amplitudesof El Nifio episodesrary, their phasingcanbe remarkablysimilar in thatthe peak
SSTanomaliesoccurin the borealwinter. Many of the modelsdo not showpronounceghasdocking in
the temperaturesvolution, and they tend to lie outsidethe envelopeof observedeventsin the boreal
winter of year(+1). Thesemodelsalso do not simulate well the transition from negativeto positive
anomaliesseenin the observationsThe modelsthat comparewell with the observationsare BMRC,
CCSR,ECHAM4/0OPYC3,HadCM2(flux-correctedmodels),and CERFACS,DOE- PCM, andHadCM3
(non-flux-corrected models).
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To examinethe globalatmospherigesponsait the peakof ENSOthe DJF seasonadnomaliesof
the TAS, meansea-levepressurdPSL)andprecipitation(PR) werecompositechasedn the eventsused
to generateéhe compositesn Fig. 1. For El Nino, compositeanomaliesof TAS andPSL from the NCEP
reanalysis(1949-1998)are shown in Fig. 2. Fig. 2 showsthe dramatic perturbationto the Walker
circulation and the warm TAS anomaliesin the tropical Pacific. Enhancedrainfall overliesthe warm
temperatureanomaliesin the tropical Pacific, andthereis evidenceof an eastwarddisplacementf the
SouthPacific Convergenc&one (not shown).In the Pacific Oceanthe datelineis a key regionfor the
anomaliesof TAS and PSL. Specifically, this is the location of transition for Walker circulation
anomaliesandto the eastof the datelinethe largestpositive TAS anomaliesarefound. With theserobust
featuresof ENSOin mind, we find thatthe simulatedvarm eventcompositesanbe categorizednto four
groups.
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Figure‘2. NCEP Réanalysis. DJF composites for warm events. (a) TAS, (b) PSL (Positive anom
shaded, negative anomalies contoured)

Group 1. CERFACS, ECHAM4/OPYC3, HadCM2, and HadCM3 are most consistentwith
observationsA representativenodel (ECHAM4/OPYC3)is shownin Fig. 3. Notably, they havewell
definedWalker circulationanomalieswith enhanced AS anomaliesextendingfrom the tropical central
Pacific to the west coastof South America. Thesemodelsalso simulatewell the associatecEl Nifio
rainfall in the tropical Bcific.
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Figure 3. ECHAM4/OPYC3 control run. DJF composites for warm events. (a) TAS, (b) PS!



Group 2: BMRC, CCSR, and CSIRO are characterizedoy a westwarddisplacementof the Walker
circulationanomalieYBMRC shownin Fig. 4). In thesemodels,positive PSL anomalies>0.5hPaextend
to only ~150°Ein the tropical Pacific. The maximum TAS warming is locatedin the tropical central
Pacific Ocean,while the anomaliescloser to South America are decidedly weaker than observed.

Enhancedainfall of >0.5mmday* fails to extend eastof ~150°Win the equatorialPacific, consistent
with the westwrd displacement of temperature and pressure anomalies.
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Figure 4. BMRC control run. DJF composites for warm events. (a) TAS, (b) PSL

Group3: CCMA, ECHAM3/LSG, GFDL, IAP/LASG, MRI, andNCAR/WM exhibit a more pronounced
westwarddisplacementf the Walker circulationand/orvery weakpositive PSLanomaliesn thevicinity
of the Maritime continent(CCCMA, Fig. 5). The TAS anomaliesn the tropical Pacific are very weak.
OtherthanGFDL, all of thesemodelshavea warm NorthernHemisphereoverthe Pacific Ocean failing
to simulatethe reducedTAS that extendsrom the Maritime continentinto the northeastermextratropical
Pacific Ocean.only CCMA and GFDL have their strongespositive rainfall anomaliesnearthe dateline.
The remaining models unrealistically have their enhancedrainfall anomaliesin the vicinity of the
Maritime continent.
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Figure 5. CCCMA control run. DJF composites for warm events. (a) TAS, (b) PSL

Group4: Theremainingmodels, DOE-PCM(shownin Fig. 6), GISS,LMD/IPSL, andNCAR/CSM, are
characterizethy hemispheridc®SLanomaliesn the Pacificthataremoreconsistentvith a modificationof
the Hadley circulation rather than the Walker circulation. North of the equatorthe tendencyis for
negativePSL anomalieswhile southof the equatorthe PSL anomaliesare positive. Consistentvith these



errorsin the circulationandtemperaturethe rainfall anomaliesclearly reflecta northward displacement
of the tropical comergence zone
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Figure 6. DOE-PCM control run. DJF composites for warm events. (a) TAS, (b) PSL
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